

Final Exam Financial Products and Introduction to Pricing

MMMEF & IRFA Prof. : Nicolas Gaussel Academic Year 2025–2026

Max.duration: 2 hours 30 min

Instructions: The use of cell phones, tablets, and computers is strictly prohibited. Communication or signalling with others during the exam is strictly prohibited. This might cost you at least 5 points as well as a notification to the Administration who will advise.

Foreword: Write your answers clearly and neatly, as only legible work will receive full credit. On top of that, Bonus points may be awarded for presentation quality. Having said that, I wish you all the best.

With Solutions

Date: October 24, 2025

1 Forward Contracts

Exercise 1.1

Consider a one-year forward contract on one ounce of gold. Assume that it costs -2 per ounce per year to store gold. Assume that the spot price today is -350 and the term structure of interest rates is flat at 10%. Write the formula of the forward price, and provide an approximate numerical value, when the payment of the storage cost is made:

- At the end of the year.
- At the beginning of the year.
- At the middle of the year.

Solution 1.1

The cost of storage increases the cost of carrying the asset and hence increases the forward price.

- 1. $\frac{350}{ZC} + 2$
- 2. $\frac{350+2}{ZC}$
- 3. $\frac{350+2e^{-5\%}}{ZC}$

Exercise 1.2

Today is January 1, 2016 and interest rates are equal to zero. Last year, in 2015, Netflix posted a performance of approximately +134%. That same year, Vale S.A., a Brasilian company specialized in iron extraction lost nearly half of its value. Netflix stock price today is equal to \$117 and Vale S.A. stock price is equal to \$4.3. Neither company announced any dividend payment between January and June.

- 1. What is the 3 month forward price for each company?
- 2. Netflix 3 month forward price is proposed at 115. Can you take advantage of this opportunity? If yes, describe the corresponding operations.
- 3. It turns out that Netflix has announced a dividend payment of \$3 in March but you did not notice it. Is your strategy still valid. What should you do now?

Solution 1.2

- 1. Equal to their spot price
- 2. Since the forward price is too low, you can go long the forward, sell the stock and put the money at the bank. At maturity you will receive: $S_T S_T + 117 115 = 2$.
- 3. Now the forward price is too high so you should sell the forward, buy the stock by borrowing money. At maturity you will receive: $S_T S_T 117 + 115 + 3 = 1$

Exercise 1.3

Consider an asset which price at date t is denoted S(t). Let P(t,T) the ZC price of maturity T. The forward price of maturity T is denoted $F(t,T) \equiv \frac{S(t)}{P(t,T)}$. The log return between two dates t_1 and t_2 of any generic asset with price X(t) is defined as $\mu_X(t_1,t_2) \equiv \ln \frac{X(t_2)}{X(t_1)}$.

- 1. Derive the relationship between the log returns of the Forward, the spot and the ZC.
- 2. Discuss the previous result. How does this relate to the return of the cash and carry strategy?
- 3. What is the return of the forward if the ZC price does not change between t_1 and t_2

Solution 1.3

1. $ln\left(\frac{S(t_2)}{P(t_2,T)} / \frac{S(t_1)}{P(t_1,T)}\right) = ln\left(\frac{S(t_2)}{S(t_1,T)}\right) - ln\left(\frac{P(t_2,T)}{P(t_1,T)}\right) = \mu_S - \mu_P$

- 2. Being long the forward is equivalent to receive the performance of the spot and pay the cost of borrowing.
- 3. $\mu_F = \mu_S$

2 Options

Consider a European option with payoff function f, on an underlying with final -random-value S_T . Its price can be computed as $e^{-rT}E(f(S_T))$, where the expectation is calculated under the Risk Neutral Probability. Accordingly, the intrinsic value can be defined as $e^{-rT}f(E(S_T))$, again under the Risk Neutral Probability.

Exercise 2.1

The 1Y discounting factor is equal to 95%. We consider a one year call option with strike price 200. Denote S_0 the current value of the underlying stock price, C_0 the price of the European call and P_0 the price of the European put, each of them with strike 200. No dividend will be paid.

- 1. Denote IC_0 and IP_0 respectively the intrinsic value of the call, and the intrinsic value of the put. Calculate IC_0 and IP_0 as functions of S_0 .
- 2. Prove that $\forall S_0, C_0 \geq IC_0$ and that $P_0 \geq IP_0$.
- 3. Which name is usually given to the difference between the price of the option and its intrinsic value?
- 4. For a generic payoff f, provide a second order approximation of the difference between its price and its intrinsic value, as a function of σ_T^2 the variance of S_T .

- 5. You are given the possibility to exercise your options before maturity. Denote EC_0 and EP_0 the money you can obtain by exercising right now your option. Write EC_0 and EP_0 as functions of S_0 .
 - In what follows, we want to understand if it might be interesting to early exercise the option.
- 6. Calculate $IC_0 EC_0$. Can you deduce an ordering relationship between C_0 and EC_0 ? Are there situations where you should exercise the call option before maturity?
- 7. Same questions for the put option.

Solution 2.1

- 1. the time value
- 2. $IC_0 = (S_0 190)^+$ and $IP_0 = (190 S_0)^+$
- 3. $EC_0 = (S_0 200)^+$ and $IP_0 = (200 S_0)^+$
- 4. Let $\Delta C_0 = IC_0 EC_0$. If $S_0 \ge 200$, $\Delta C_0 = 10$, if $S_0 \le 190$, $\Delta C_0 = 0$ and if $190 \le S_0 \le 200$, $\Delta C_0 = S_0 190$.
- 5. Let $\Delta P_0 = IP_0 EP_0$. If $S_0 \ge 200$, $\Delta P_0 = 0$, if $S_0 \le 190$, $\Delta P_0 = -10$ and if $190 \le S_0 \le 200$, $\Delta C_0 = 200 S_0$.
- 6. $\Delta C_0 = IC_0 EC_0$ is always positive so it is always more interesting to sell the call than to exercise it.
- 7. $\Delta C_0 = IC_0 EC_0$ is always positive so necessarily C > EC: it is always more interesting to sell the call than to exercise it.
- 8. $\Delta P_0 = IP_0 EP_0$ is sometimes positive but becomes negative when S_0 is sufficiently small: so it might be positive to exercise the put option for some values of S_0 .

Exercise 2.2

We now take the same assumptions as in the previous exercise but a dividend equal to 15 euros will be paid one day before maturity.

- 1. What is the relationship between the payoffs of the call option, the put option, S_T and the strike K = 200?
- 2. From that equality, deduce a relationship between C_0 , P_0 and S_0
- 3. Calculate IC_0 then calculate $IC_0 EC_0$.
- 4. Are there situations where it might be interesting to exercise the call option before maturity?

Solution 2.2

- 1. At maturity $(S_T K)^+ + (K S_T)^+ = S_T K$
- 2. Taking the expectation of all terms under the RPN yields $\mathbb{E}((S_T K)^+) + \mathbb{E}()(K S_T)^+) = ()S_0/ZC D) K$. Now taking the discounting value of the previous yields $C_0 P_0 = (S_0 15 \times 95\%) 190$ hence $C_0 P_0 \approx S_0 205$.
- 3. $IC \approx (S_0 205)^+$.
- 4. With dividends, we no longer always have $IC_0 \geq EC_0$. This happens indeed when $S_0 \geq 200$. As a result, when the call In The Money, there might be a value of S_0 where exercising becomes more interesting than selling.

Exercise 2.3

Today, with 1 US dollar you can buy $X_0 = 150$ Japanese Yen (JPY). X is referred to as the USDJPY rate. You plan to travel to Japan in six month time and are ready to spend a budget of USD 10000. The Japanese 6M rate is equal to 1% and the USD 6M rate is equal to 5%. The B&S formula for the call price with continuous dividend rate q is denoted $Call(S_0, K, r, q, \sigma, T)$ and Put(...) for the put.

- 1. Write the formula of the 6M forward USDJPY rate and provide an approximate numerical value.
- 2. You expect that the realized USDJPY rate in 6M will be equal to its spot value. What should you do? Change now, change in 6M or enter into a forward contract?
- 3. You want to protect yourself against a 10% or more appreciation of the yen against USD. In that scenario, would X increase or decrease? Should you buy a call or a put?
- 4. To calculate the price of the option you want to buy, which parameters S_0 , K, r, q, T should you input in your BS formula? Explain why.

Solution 2.3

Quotation can either be $1 USD = X_0 JPY$ or $1 JPY = Y_0 USD$ with obviously $X_0 = \frac{1}{Y_0}$. The appreciation of the yen means that we can have less yen with 1 USD hence $X \searrow$ and $Y \nearrow$. The forward value of the Yen compensates the attractiveness of the USD and hence the forward has to be lower than the spot.

- 1. $F_T = X_0 \times e^{(r_{jpy} r_{usd})T}$
- 2. Forward markets predict an appreciation of the yen (i.e. $X_T \leq X_0$). You should not buy a forward. You can either buy yen today and put them on a cash account or, if you are really confident about your prediction, put your dollars in a USD account to benefit from the higher USD rate and change your yens in 6M time.
- 3. You should buy a put

4. You should use $S_0 = F_T$, K = 136, r = 5%, q = 5%, T = 0.5. With that set of parameters the forward value is equal to the spot value and the discounting is made at the appropriate (local) rate.