TD2: Expectation calculations with change of measure

Nicolas Gaussel

Friday, December 12 2025

1 Black and Scholes formula

Let $dS_t = S_t \left(rdt + \sigma dW_t \right)$ where W is a Q-SBM. We want to compute $E \left(S_T - K \right)^+ = \underbrace{E \left(S_T 1_{S_T \ge K} \right)}_{B} - \underbrace{E \left(K 1_{S_T \ge K} \right)}_{A}$. We note $N \left(x \right) = E \left(1_{Y \le x} \right)$ where $Y \stackrel{law}{=} N \left(0, 1 \right)$.

1. Show that
$$S_t = S_0 exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t\right) \stackrel{law}{=} S_0 exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma \sqrt{t}Y\right)$$

2. Show that
$$A = KN(d_A)$$
 with $d_A = \frac{ln(\frac{S_0}{K}) + (r - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$

3. Let
$$Z_T \equiv \frac{S_T e^{-rT}}{S_0}$$
.

- (a) Show that Q^S defined by $\frac{dQ^S}{dQ} = Z_T$ is a probability equivalent to Q.
- (b) Show that $dZ_t = Z_t \sigma dW_t$
- (c) Show that, $dS_t = S_t \left(\left(r + \sigma^2 \right) dt + \sigma dW_t^S \right)$ where W_t^S is a Q^S SBM

4. Show that
$$B = S_0 e^{rT} E^{Q^S} \left(1 S_{T \ge K} \right) = S_0 e^{rT} N \left(d_B \right)$$
 with $d_B = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r + \frac{\sigma^2}{2}\right) T}{\sigma \sqrt{T}}$

2 Margrabe formula

Let

$$dX_t = X_t \left(rdt + \sigma_X dW_t^X \right)$$
$$dY_t = Y_t \left(rdt + \sigma_Y dW_t^Y \right)$$

with $d\langle X,Y\rangle_t=\rho dt$. We want to compute the value of the exchange option: $V=E\left(X_T-Y_T\right)^+$. To do this we rewrite $V=E\left(Y_T\left(\frac{X_T}{Y_T}-1\right)^+\right)$

1. Show that
$$d\left(\frac{1}{Y_t}\right) = \frac{1}{Y_t} \left(-\left(r - \sigma_Y^2\right) dt - \sigma_Y dW_t^Y\right)$$

- 2. Show that $d\left(\frac{X_t}{Y_t}\right) = \frac{X_t}{Y_t} \left(\left(\sigma_Y^2 \rho \sigma_X \sigma_Y\right) dt + \sigma_X dW_t^X \sigma_Y dW_t^Y \right)$
- 3. Exercise 1: Define density $Z_T \equiv \frac{Y_T e^{-rT}}{S_0}$ and P^2 the corresponding probability
 - (a) Show that $dZ_t = Z_t \sigma_Y dW_t^Y$
 - (b) Show that $W_t^{2,X} = W_t^X \rho \sigma_Y t$ and $W_t^{2,Y} = W_t^Y \sigma_Y t$ are P^2 SBM
 - (c) Show that $d\left(\frac{X_t}{Y_t}\right) = \frac{X_t}{Y_t} \left(\sigma_X dW_t^{S,X} \sigma_Y dW_t^{S,Y}\right) = \frac{X_t}{Y_t} \sigma_{X/Y} dW^2$ with $\sigma_{X/Y}^2 = \sigma_X^2 + \sigma_Y^2 2\rho\sigma_X\sigma_Y$ and W^2 is a $P^2 SBM$
- 4. Show that $V = S_0 e^{rT} E^{P^2} (M-1)^+$ where $M \stackrel{law}{=} exp \left(-\frac{1}{2} \sigma_{X/Y}^2 T + \sigma_{X/Y} \sqrt{T} Y \right)$ with $Y \stackrel{law}{=} N(0,1)$.
- 5. Show that V is the BS price of an option with volatility $\sigma_{X/Y}$ and nul interest rate.
- 6. Application. Let X be the Nasdaq and Y be the S&P500. Suppose that their volatilities are both equal to 15%. Graph the price as a function of ρ . Comment.

3 Garman-Kholhagen

3.1 Exercise

Let S^f a foreign asset denominated in a foreign currency. X_t^f is the value of 1 unit of foreign currency in local curreny. All usual quantities with exponent f refer to foreign quantities. Typically, B_t^f is the foreign bank account and B_t is the local bank account. The value of the foreign asset in domestic currency is denoted S_t . Remind that the bank account is locally predictable i.e. has no brownian part.

- 1. Explain why $\frac{S^f}{B^f}$ is a Q^f martingale and why $\frac{S^fX^f}{B_t}$ is a Q-martingale.
- 2. Show that $Z_t = \frac{X_t^f B_t^f}{B_t}$ is the density of Q^f w.r.t. to Q.
- 3. Let $dX_t^f = X_t^f (\mu_X dt + \sigma_X dW_t)$.
 - (a) Show that necessarily $\mu_t^X = r_t r_t^f$.
 - (b) Show that $dZ_t^{-1} = Z_t^{-1} \left(-\sigma_X^2 dt \sigma_X dW_t \right)$
- 4. Let $dS_t^f = S_t^f \left(r_t^f dt + \sigma_S dW_t^f \right)$ with $d \langle W^f, W \rangle = \rho dt$.
 - (a) Show that $dW_t^2 = dW_t^f + \rho \sigma_X dt$ is a Q-SBM
 - (b) Show that $dS_t^f = S_t^f \left(\left(r_t^f \rho \sigma_S \sigma_X \right) dt + \sigma_S dW_t^2 \right)$

- 5. Application. Let N_t the value of the USD denominated Nasdaq. Let $I_t = \frac{N_t}{N_0}$.
 - (a) What is the value today of receiving I_1 EUR in 1 year time?
 - (b) Compute it as a function of ρ for $r=r_f=0,\ \sigma_N=20\%$ and $\sigma_{USD/EUR}=10\%$. Comment.

3.2 Solution

Q1: As a quoted foreign asset, $\frac{S^f}{B^f}$ is a Q^f martingale. Since this asset can be changed in domestic currency at any time, its channel value is a price and hence $\frac{S^fX^f}{B_t}$ is a Q-martingale.

Q2: $\frac{S^f}{B^f}$ is a Q^f martingale iff $\frac{S^f}{B^f}Z$ is a Q martingale. Since $\frac{S^fX^f}{B_t}$ is a Q martingale. Hence, for all Q-meas S^f , $\frac{S^fX^f}{B_t}$ is a Q martingale iff $\frac{S^f}{B^f}Z$ is a Q martingale. As a result: $Z_t = \frac{X_t^fB_t^f}{B_t}$.

Q3a: Z_t is necessarily a martingale. From a financial perspective, because

Q3a: Z_t is necessarily a martingale. From a financial perspective, because it is a quoted asset expressed in domestic bank account units. From a mathematical perspective, because it is a probability density.

Now Ito applied to Z yields

$$dZ = (\mu_X - r + r_f) dt + \dots$$

Hence Z is a martingale iff the equality holds.

Q3b: Ito applied to Z^{-1} .

Q4a: Girsanov theorem states that

$$dW^2 \equiv dW_t^f - \frac{d\left\langle Z^{-1}, W^f \right\rangle_t}{Z^{-1}}$$

Using relation 3b : $\frac{d\langle Z^{-1},W^f\rangle_t}{Z^{-1}} = -\rho\sigma_X dt$ which is the desired result. Q4b: immediate from the previous results

4 Ito's lemma Cheatsheet

Martingale Let P^1 a probability and P^2 another equivalent one with density Z w.r.t. P^1 . M is a P^1 -martingale \iff ZM is a P^2 -martingale

Girsanov Let W^1 a P^1-SBM . Let $Z_T=\frac{dP^2}{dP^1}$ and $Z_t=E^1\left(Z_T|F_t\right)$ then $W_t^2=W_t^1-\int_0^t\frac{d\langle Z,W^1\rangle_s}{Z_s}$ is a P^2-SBM . With Z_t solution of $dZ_t=Z_t\lambda_t dW_t$, $d\langle W,W^1\rangle=\rho_s ds$ then $\frac{d\langle Z,W^1\rangle_s}{Z_s}=\rho_s\lambda_s$

Differentiation Let X and Y two diffusions then: $d(X_tY_t) = X_tdY_t + Y_tdX_t + d\langle X, Y \rangle_t$

Ito, 1D
$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} d\langle X \rangle_t$$

Ito,2D
$$df(X_t, Y_t) = \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} d\langle X \rangle_t + \frac{\partial f}{\partial y} dY_t + \frac{1}{2} \frac{\partial^2 f}{\partial y^2} d\langle Y \rangle_t + \frac{\partial^2 f}{\partial x \partial y} d\langle X, Y \rangle_t$$

Ito, nD Let
$$W = \begin{pmatrix} W^1 \\ \dots \\ W^n \end{pmatrix}$$
 and n dimensional SBM, $X = \begin{pmatrix} X^1 \\ \dots \\ X^n \end{pmatrix}$ a diffusion

with parameters
$$\sigma = \begin{pmatrix} \sigma_{11} & \\ \dots & \\ \sigma_{1n} & \sigma_{nn} \end{pmatrix}$$
, $\mu = \begin{pmatrix} \mu^1 \\ \dots \\ \mu^n \end{pmatrix}$ defined by

$$dX = \mu dt + \sigma dW_t$$

Let
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$, $Hf = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$

then

$$df = \nabla f' dX + \frac{1}{2} dX'_t H_f dX_t$$
$$= \left(\nabla f' \mu + \frac{1}{2} tr(\sigma' H f \sigma)\right) dt + \nabla f' \sigma dW_t$$