

TD3: rehearsal before exam

Nicolas Gaussel

Friday, January 23, 2026

1 Vasicek model

The short term rate at date t is denoted $r(t)$ and is solution of the following Stochastic Differential Equation

$$\begin{aligned} dr(t) &= k(\theta - r(t)) dt + \sigma dW(t) \\ r(0) &= r_0 \end{aligned} \tag{1}$$

Exercise 1.1

Show that $r_t = r_0 e^{-kt} + \theta(1 - e^{-kt}) + \sigma \int_0^t e^{-k(t-u)} dW_u$ is a solution of equation (1)

Exercise 1.2

Prove that:

1. $\mathbb{E}(r_t) = r_0 e^{-kt} + \theta(1 - e^{-kt})$
2. $Var(r_t) = \frac{\sigma^2}{2k} (1 - e^{-2kt})$

Exercise 1.3

Discuss the behavior of $r(t)$ for “small” t and “large” t . Characterize what is small and large and compare with the brownian case (i.e. $k = 0$)

Define the integrated short-term rate

$$X(t) \equiv \int_0^t r(s) ds$$

Exercise 1.4

Explain why $X(t)$ is a gaussian process. Show that

$$\mathbb{E}(X(t)) = \theta t + (\theta - r_0) \frac{(1 - e^{-kt})}{k}$$

Exercise 1.5

Note $\phi(u, v) \equiv \text{cov}(r_u, r_v)$. Define $y(t) \equiv \int_0^t e^{-k(t-u)} dW_u$. Show that

$$\phi(u, v) \equiv \sigma^2 \mathbb{E}(y(u) y(v))$$

Then show that:

$$\phi(u, v) = \frac{\sigma^2}{2k} e^{-k(v+u)} (e^{2ku} - 1)$$

Exercise 1.6

We want to compute $\text{Var}(X_t)$.

1. Explain why $\text{Var}(X_t) = \text{Var}\left(\int_0^t y(s) ds\right)$
2. Show that $\text{Var}(X_t) = \int_0^t \int_0^t \phi(u, v) dudv$
3. Prove that

$$\text{Var}(X(t)) = \frac{\sigma^2}{2k^3} (2kt - 3 + 4e^{-kt} - e^{-2kt})$$

Exercise 1.7

Explain why the price of the zero-coupon is defined as

$$P(T) = \exp(-X(T))$$

Thanks to the previous computation, compute the price of the zero-coupon as a function of k, σ, r_0 and t .

2 Around B&S Formula

Consider a situation where there is one riskless rate r and where the dynamics of some underlying price, under the risk neutral probability Q is governed by:

$$\begin{aligned} dS_t &= S_t (ccdt + \sigma dW_t) \\ S_0 &= 1 \end{aligned}$$

where W_t is a Standard Brownian Motion. σ is the volatility and cc the cost of carrying that underlying. Define the forward price at maturity T as $F_T \equiv E(S_T)$ under the Risk Neutral Probability

Define Y_t a process similar to S_t but with non trend:

$$\begin{aligned} dY_t &= Y_t \sigma dW_t \\ Y_0 &= 1 \end{aligned}$$

We want to calculate the price of a call option of strike K , and maturity T written on S_T in that model.

Exercise 2.1

Discuss the value of cc w.r.t. r when:

1. S is stock paying dividends
2. S is an FX rate
3. S is a commodity contract

We want to compute

$$\begin{aligned} C(\dots) &= e^{-rT} \times \mathbb{E}^Q (S_T - K)^+ \\ &= e^{-rT} \times (\mathbb{E}^Q (S_T 1_{S_T \geq K}) - \mathbb{E}^Q (K 1_{S_T \geq K})) \end{aligned}$$

We define $B \equiv \mathbb{E}^Q (S_T 1_{S_T \geq K})$, $A \equiv \mathbb{E}^Q (K 1_{S_T \geq K})$ and $N(x) = E(1_{Y \leq x})$ with $Y \stackrel{law}{=} N(0, 1)$.

Exercise 2.2

1. Integrate S_T and Y_T .
2. Calculate F_T as a function of cc and T
3. Show that $S_T = F_T \times Y_T$.
4. Show that $A = KN(d_A)$ with $d_A = \frac{\ln\left(\frac{F_T}{K}\right) - \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}$
5. Show that Q^S defined by $\frac{dQ^S}{dQ} = Y_T$ defines a probability equivalent to Q
6. Show that $W_t^S \equiv W_t - \sigma^2 t$ is a Q^S SBM
7. Show that, $dY_t = Y_t (\sigma^2 dt + \sigma dW_t^S)$
8. Show that $B = F_T \times \mathbb{E}^{Q^S} (1_{S_T \geq K}) = F_T \times N(d_B)$ with $d_B = \frac{\ln\left(\frac{S_T}{K}\right) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}$

Exercise 2.3

1. Thanks to the above write $C(\dots)$ as a function F_T , K , r , σ and T
2. Check that when $cc = r$ the usual B&S formula is recovered

3 Hull-White model

The short rate is modelled as

$$r(t) = \sum_{i=1}^n x_i(t) + \varphi(t)$$

where

$$\begin{aligned} dx_i(t) &= -a_i x(t) dt + \sigma_i dW_i(t) \\ x_i(0) &= 0 \end{aligned}$$

and $d\langle W_1, W_2 \rangle = \rho dt$. φ is a deterministic function such that $\varphi(0) = r(0)$. In the Vasicek model, one had:

$$\varphi(t) = r_0 e^{-kt} + \theta(1 - e^{-kt})$$

Exercise 3.1

Demonstrate the following relationships:

$$\begin{aligned} x_i(t) &= \sigma_i \int_0^t e^{-a_i(t-u)} dW_i(u) \\ E(x_i(t) \mid \mathcal{F}_u) &= x_i(u) \left(1 - e^{-a_i(t-u)}\right) \\ \langle x_i(t) \rangle &= \frac{\sigma_i^2}{2a_i} (1 - e^{-2a_i t}) \\ \langle x_i(t), x_j(t) \rangle &= \frac{\rho \sigma_i \sigma_j}{a_i + a_j} (1 - e^{-(a_i + a_j)t}) \\ \gamma_{ij}(t, s, u) &= \text{cov}(x_i(s), x_j(u) \mid \mathcal{F}_t) \\ &= \frac{\rho \sigma_i \sigma_j}{a_i + a_j} e^{-a_i s} e^{-a_j u} (e^{(a_i + a_j)s \wedge u} - e^{(a_i + a_j)t}) \\ \langle r(t) \rangle &= \sum_{i=1}^n \langle x_i(t) \rangle + 2 \sum_{i < j} \langle x_i(t), x_j(t) \rangle \end{aligned}$$

Exercise 3.2

Let $I_i(t, T) \equiv \int_t^T x_i(u)$ a Gaussian variable; Show that:

$$\begin{aligned} E(I_i(t, T)) &= M_i(t, T) x_i(t) \\ \text{with } M_i(t, T) &= \frac{1 - e^{-a_i(T-t)}}{a_i} \end{aligned}$$

and

$$\langle I_i(t, T) \rangle = \frac{\sigma_i^2}{a_i^2} \left(T - t + \frac{2}{a_i} e^{-a_i(T-t)} - \frac{1}{a_i} e^{-2a_i(T-t)} - \frac{3}{2a_i} \right) \quad (2)$$

$$\langle I_i(t, T), I_j(t, T) \rangle = \frac{\rho \sigma_i \sigma_j}{a_i a_j} (T - t) + \frac{e^{-a_i(T-t)} - 1}{a_i} + \frac{e^{-a_j(T-t)} - 1}{a_j} - \frac{e^{-(a_j+a_i)(T-t)} - 1}{a_j + a_i} \quad (3)$$

$$V(t, T) \equiv \left\langle \sum_{i=1}^n I_i(t, T) \right\rangle = \sum_{i=1}^n \langle I_i(t, T) \rangle + 2 \sum_{i < j} \langle I_i(t, T), I_j(t, T) \rangle$$

Exercise 3.3

Show that the price of the zero-coupon bond is equal to

$$P(t, T) = \exp \left\{ -\phi(t, T) - \sum_{i=1}^n M_i(t, T) x_i(t) + \frac{1}{2} V(t, T) \right\}$$

where $\phi(t, T) \equiv \int_t^T \varphi(u) du$.

Then show that ϕ is characterized by the following relationship between spot quantities. Comment.

$$\Leftrightarrow \exp(-\phi(t, T)) = \frac{P(0, T)}{P(0, t)} \exp \left(-\frac{1}{2} (V(0, T) - V(0, t)) \right)$$

Eventually prove that:

$$P(t, T) = \frac{P(0, T)}{P(0, t)} \exp \left(- \sum_{i=1}^n M_i(t, T) x_i(t) + \frac{1}{2} \Delta V(t, T) \right)$$

with $\Delta V(t, T) \equiv V(t, T) + V(0, t) - V(0, T)$.